Automatic Eye Detection Error as a Predictor of Face Recognition Performance

Abhishek Dutta1, Raymond Veldhuis, Luuk Spreeuwers

University of Twente, Netherlands.

May 13, 2014

35th WIC Symposium on Information Theory in the Benelux, May 12,13, 2014

1http://abhishekdutta.org
Verification Experiment

Verification Decision Uncertainty in Decision

- front pose and illum.
- uneven illumination
- non-frontal pose
Verification Experiment

<table>
<thead>
<tr>
<th>Verification Decision</th>
<th>Uncertainty in Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>least uncertain</td>
</tr>
<tr>
<td>YES</td>
<td>more uncertain</td>
</tr>
<tr>
<td>YES</td>
<td>most uncertain</td>
</tr>
</tbody>
</table>

- **Frontal pose and illum.**
- **Uneven illumination**
- **Non-frontal pose**
Predictor of Face Recognition Performance

- many existing predictors: pose, illumination, noise, blur, etc.
- we propose a novel predictor: Automatic Eye Detection Error (AEDE)
Automatic Eye Detection Error (AEDE)

- $p^m_{\{l,r\}}$ manually annotated eye locations
- $p^d_{\{l,r\}}$ automatically detected eye locations

$$J = \frac{\max\{||p^m_l - p^d_l||, ||p^m_r - p^d_r||\}}{||p^m_l - p^m_r||}$$
Does AEDE respond to image quality variations?

We visually inspect the distribution of AEDE (J) for different pose and illumination variations.

Figure: MultiPIE camera and flash positions.
Does AEDE respond to image quality variations? ...

Figure: Distribution of normalized eye detection error J of probe images for illumination variations.
Does AEDE respond to image quality variations? ...
Does AEDE respond to image quality variations? ...
Relation between AEDE and Recognition Performance

- MultiPIE dataset and FaceVACS (use for eye detection and recognition)
- Gallery: fixed to high quality frontal mugshot
- Probe: pose and illumination variations
- We plot Receiver Operating Characteristics (ROC) curve corresponding to four intervals of J_p
Relation between AEDE and Recognition Performance …

Figure: Recognition performance variation for each monotonically increasing interval of normalized eye detection error J.
Conclusions

- monotonically increasing intervals of AEDE correspond to distinct recognition performance. Therefore, AEDE is a predictor of face recognition performance.
- AEDE can be seen as a summary of many other image quality parameters like pose, illumination etc.
- AEDE has a non-linear relationship with face recognition performance and further work is required to fully understand the reasons for this non-linearity.
Limitations

- AEDE requires manually annotated eye coordinates in order to quantify the quality of a facial image.
- AEDE cannot capture all types of quality variations that may affect face recognition performance. For example, in a photograph containing facial image with closed eye, the eye detection error will be very high. This does not necessarily translate into a difficult verification problem. Therefore, we need more quality parameters to fully quantify the variability in recognition performance.
Questions?